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AIJetract-The localization of deformation into a shear band is discussed for rate dependent plastic
materials. A shear layer model is proposed and the assumption is made that the material considered exhibits
strain softening behavior in shear. The results of the shear layer model show that even small material rate
sensitivity retards significantly the localization process. A linearized perturbation analysis underestimates
the excess strain in the band, but it does provide a qualitative description of strain localization,

I. INTRODUCTION

The localization of deformation into shear bands is commonly observed when solids deform
into the plastic range. The localization phenomenon may be understood as a bifurcation from a
homogeneous deformation pattern, or, alternatively, it may be considered to result or grow
from the material inhomogeneities which would degrade the strength of the material abruptly at
the onset of localization. The theoretical framework which governs shear band formation in
rate independent solids is due to Hadamard [1], Thomas [2], Hill[3), and Mandel[4]. Rice[5] has
given a general review of the theoretical framework for localization of deformation in rate
independent materials, both from the bifurcation and the imperfection growth viewpoints. The
results of localization analyses depend critically on the constitutive descriptions of the material
behavior; for example, see Rice [5].

Plastic deformation via dislocation motion is an inherently rate dependent process. This
material rate sensitivity is found to have retarding effects on ftow localization. Examples
include the study of the necking of a bar by Hutchinson and Neale [6], the study of the necking
of a thin sheet by Hutchinson and Neale [7], Marciniak et al.[8], and Ghosh[9], and the study of
the shear band instability in a porous solid by Pan et al. [10].

Here, a general linearized perturbation analysis is presented, and compared with the
theoretical framework of the band mode for rate dependent materials; a shear layer model with
an assumption of strain softening behavior in shear is proposed to illustrate the retardation
effects on ftow localization due to the material rate sensitivity.

2, LINEARIZED PERTURBATION ANALYSIS
First, we consider a material element which is rate dependent. For simplicity in this

introductory section we assume that the rate dependence is expressed by the following
functional relationship:

q = t(E" ~'P(1)' P(2j, .... Pm) (2.1)

where u represents the stress tensor and, working within the context of the classical small
strain approach, ~ is the (small) strain tensor, ~ is the strain rate tensor, and P(I), P(2)' ... and Pm
represent properties of the solid. This form oversimplifies what could be regarded as viable
models of elastic-plastic rate-sensitive response, but serves to illustrate general effects of rate
sensitivity.

The linearized perturbation of eqn (2.1) is

_ f( 0·0 0 0 0 .\+ at _ at _ ~ af _
q - _ ~,~ ,P(I)'P(2),'" ,P(T)/ -;-: ~+"i7: ~+~ """'P(ij

u~ u~ i=\ Up(i)
(2.2)

where the quantities with superscript "0" represent the unperturbed homogeneous strain history
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~0(t) and its rate !0(t) acting on a material with uniform properties P?n, a quantity with a tilde "-,,
represents a small perturbation of the quantity, and the partial derivatives are evaluated at the
unperturbed state.

We denote the fourth order tensors O/faE and a/foE as Land M, respectively, and we denote
the second order tensors a!fap(i) as N(i)~· ••• •

The equilibrium condition requires·that

v. (f == O.

If t represents the fundamental solution, therefore,

Substituting eqn (2.2) into eqn (2.3), we obtain the equation

T

Y. (f:.(t): ~ + ¥(t): ~ + I ty(j)(t)p(i) == O.
;=1

The strain and strain rate tensors are

(2.3)

(2.4)

(2.5)

(2.6)

where Vu represents the displacement gradient, VIi represents the velocity gradient, and a
supersc~ipt "T" indicates the transpose. We have the"' perturbed ~ and ~ as function of ~ and 4,
respectively:

(2.7)

(2.8)

We thus obtain the governing equations for the perturbed g from eqs. (2.4), (2.7) and (2.8). In
component form, we have

(2.9)

In obtaining eqn (2.9), we use L;ikl == L;ilk and M jikl == M;ilk because of symmetry of ~ and ~.

The Fourier transformations of g and P(i> are

Equation (2.9) becomes

T

kiLiim/(t)kIUm(~, t)+ kiMijml(t)~ :t Um(~, t) - ~ V-=t k jN\j>(t)P(1) == O. (2.10)
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Now, we consider the special case of a band mode where Band P(i) only vary along
the direction of '!' so that

P(i) = P(i)( '! . -!' t),

Equation (2.9) becomes

T

njLjik/(t)n/u'/!.'!. . ~ t) +njMijk/(t)n, aa
t

u'/!.'! . ~' t) +L njNW(t)p(I)('! . x-, t) = 0 (2.11)
1=1

where u'/!.'! . ~' t) means the second derivative of Uk('! . ~' t) with respect to '! . ~' and p(I)('! . ~' t)
means the first derivative of P(I)('! . x-' t) with respect to '! . ~'

When the material is rate independent, we have

af
~=M=O
aE -

so the second term, which has the time derivative in eqns (2.10) and (2.11), vanishes. The
localization condition for the band mode (eqn (2.11» is that det(,! . ~ . n) = 0 (where detC~) means
the determinant of the matrix ~); this is the bifurcation condition on the small strain analysis.
From a number of analyses of specific materials with the presence of an initial inhomogeneity
the localization condition det(n . L . n) = 0 in the imperfection band is met well before the moduli
L of the outer field would allow locaiization, as in Rice [5]. The linearized perturbation analysis,
v'"is-a-vis the inhomogeneity formulation, thus overestimates the material strength. However, the
linearized perturbation analysis does give the correct bifurcation condition to a band mode from
a homogeneous deformation. When Lijkl = LlcJjj , the loss of uniqueness of a material element
subjected to overall displacement boundary conditions occurs as soon as the condition
det(~ . ~ . k) = 0 becomes possible for some ~ in k-space; see Rice [5]. This links localization
into the band mode to the uniqueness of the boundary value problem. For the band mode, we thus
define "material instability" as occuring when the condition det('!. . ~ . '!.) = 0 for some oreintation
'!. is first met during the deformation program.

For the rate dependent material, we similarly can treat the "material instability" as the
possibility that some component of q('! . ~' t) of the band mode may grow without limit for
some orientation n.

For a concise general analysis of the rate dependent case, rewrite eqn (2.11) as

(n . M . n) . ii" +(n . L . n) . U" = q--_. ----- (2.12)

(2.13)

where q = q(t) may here be regarded as given, well-behaved functions of time, representing the
last tenDS iii eqn (2.11). Observe that'!. . },f . '!. and'!. . ~ . '!. may be regarded, for any given n.,
as 3 x 3 matrices. If we limit attention to materials with "positive" instantaneous viscosity, it is
appropriate to assume that '!. ¥ . '! is a positive definite matrix, and hence that its three
eigenvalues m10 m2, m3 have positive real part and, further, that det(n . M . n) = m\m2m3 > O.
On the other hand, '! . ~ . '! is positive definite only up to the point ~O* in-the-strain history at
which rate independent localization condition is met, namely up to the point at which
det(,! . 1; . '!) = O. Prior to this point we may assume that all the three eigenvalues /10 /2, /3 of
'!. . ~ . '!. have positive real part, whereas at the critical point the real part of the least
eigenvalue passes through zero and, subsequently, has negative real part. (Of course, in the par
ticular case when,! . 1; . '! is a symmetric matrix, i.e. when Lijkl = Lk\ij, the /10 /2, /3 are always real.)

Accordingly, the matrix inverse of '! . ¥ . '! exists and one may write

4" + ('! . ¥ . '!)-\ . ('! . 1; . '!) . q" = ~

where h.. = ('!. . },f' ny' . q. It is well known that this equation exhibits stable solutions (no



156 Jwo PAN

exponential growth), so long as the eigenvalues al> az, a3 of the 3 x 3 matrix A, where

A == (n . M . n)-t . (n . L· n),- --- ---
have positive real part. On the other hand, if any of the eigenvalues aj, az, a3 of A have
negative real part, the solutions for q" are unstable in the sense of exhibiting exponential
growth in time. Now, since

det(~) = det(,! . l:: . ,!)/det(,! . 11 . '!),

it follows that

This result shows, since mtmZm3 > 0, that at the critical condition for localization according to
the rate independent criterion, namely at the state when one of the l's passes through zero, one
of the a's must pass through zero also. Hence, when the rate independent criterion for
localization is met, the solutions to the rate dependent model change character from exponen
tial decay (Re a > 0) to exponential growth (Re a < 0). Nevertheless, as the detailed calculations
to follow verify, this growth procedes at a finite rate and, in the presence of non-negligible
rate-sensitivity, the onset of growth (i.e. the meeting of the rate independent localization
condition) cannot be identified sensibly with instability.

3. LINEAR STABILITY ANALYSIS OF A SIMPLE SHEAR LAYER MODEL

A narrow band of intense shear deformation is a commonly observed phenomenon in
experiments; also, in single crystals or polycrystaUine aggregates, the plastic deformation is
generally considered as shear deformation on some specific crystallographic planes of each
grain via crystalline slip or dislocation motion. Thus, we are led to. investigate the material
behavior under shear deformation.

We consider an infinite layer with the normal n in the y direction as shown in Fig. 1. A shear
traction (J'xy is applied on the layer. The properties of the layer are uniform in the x and z
directions, but are allowed to have a small perturbation in the y direction. All of the field
quantities vanish, except "x, the displacement in the x direction, 'Yxy, the engineering shear strain
aUxl ay and (J'xy, the shear stress.

The equilibrium condition is that

a(J'XY = 0
ay . (3.1)

This requires that (J'xy is uniform in the y direction, and is a function of time t only. Thus, we
have

(3.2)

where a quantity with a dot means its time derivative.

y

"--------~z:-------J-- x
~----

Fig. I. An infinite layer with a small perturbation in the y direction subjected to a shear stress fT,y.
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Now, we consider the layer as elastic-viscoplastic, and decompose the shear strain rate Yxy
into the elastic part Y~y and the plastic part 1:y'

The elastic part i'~y is related to UXy by the shear modulus G as

.. -~
Yxy - G'

(3.3)

(3.4)

A power rate hardening law is used to describe the material rate dependent behavior in shear

( )

1/m
'P- a~Yxy - g(yP)xy

(3.5)

where a is regarded as the reference plastic shear strain rate, g(Y:y) represents the shear stress
uxy when yP is set equal to a, and m is the plastic strain rate sensitivity, defined asxy

_ alnuxy
m - aln' P •

Yxy

The perturbation of the elastic strain rate y~y is

;. -~-OYxy - G - .

(3.6)

(3.7)

(3.8)

Here, the elastic modulus G is treated as a uniform property throughout the layer so that the
plastic behaviour of the layer can be investigated.

The linearized perturbation of eqn (3.5) is

Y;P = i':y (f+u -u g'(:Y:y)y.p)
xy muxy xy xy g(y:y) xy

where g'(y~y) represents the derivative of g(y~y) with respect to y~Y' and f represents the
perturbation of the material properties

Since uXY = 0, eqn (3.8) can be rearranged as

dii:y+-lg'(Y:y) .p =_1_ t
dy P m g(yP ) yxy mu .xy xy xy

We rewrite eqn (3.10) as

(3.9)

(3.10)

(3.11)

where y replaces Y:y' and T replaces uxy' This is an inhomogeneous first-order ordinary
differential equation (with respect to y). The general solution is

. _r'1tt1 (ID2) 11m , (8(0») 11m
y(y) - Jo m'T(y') g(y) dy +C\g(y) . (3.12)

The first term of the solution is the particular solution, and represents the contribution to ii
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from the perturbation of the material properties; the second term represents the complementary
solution, and the constant c is identified as )i(0) which suggests that this part of the solution
deals with the development of the initial perturbed shear strain 1'(0).

We assume -y = Ii so that g(y) = T. The complementary solution equals ii(O) (g(O)/g(y»llm,
and is larger than 1'(0) only when g('I) < g(O); the complementary solution does not grow until
the shear stress is less than the shear stress at zero plastic strain.

The material may become strain softening due to various physical mechanisms, such as heat
from a large amount of plastic work [II], or void nucleation and growth [10]. Here, we assume
strain softening behavior in shear without investigating its physical basis. We denote the
maximum shear stress and its corresponding plastic strain as Tp and YP' respectively. Further
more, we denote f( Yp) as f. By assuming m is a small constant, we can apply Laplace's
method and obtain asymptotic results when l' is near the peak of T for the particular solution.
The results are:

_ = m-1/2(1- m)-1/2~ (.2e.-)(I-m
llm (~) 112 \/;. erfc((l- m) 1/2 (~) 112 ( _ »)

Y T(Y) T(Y) K 2 m 2Tp 'Yp 'Y
(3.13)

when y < YP

when 'Y = YP

_ _ -1/2(1 )-112 f (2Tn) 1/2 \/;.y-m -m - -----'" -
Tp K 2

(3.14)

- = m-1/2(1- mr 112~(~) (I -m)m (~) 1/2 \/;. (Z-erfC(( 1- m) 1/2(~) 1/2 (y - y »))
y T('Y) T(Y) K 2 m 2Tp p

(3.15)

when y > YP' Here, K is the absolute curvature at the peak stress Tp (K = Ig"("f)i), and erfc(x)
represents the complementary error function which quickly decays to zero as x becomes large.
Since l' is a continuous function around the peak stress Tp , we can examine eqn (3.14) to get
some qualitative descriptions of the growing processes; here, ii is proportional to the material
perturbation f, and has square root singularities in both the rate sensitivity m and the curvature
K. As m becomes smaller to reach the limit of rate independent behavior, the layer becomes
more unstable near the neighborhood of the peak stress; as the stress-strain curve becomes
flatter near the peak stress, the perturbation of 'I grows in the layer. This is consistent with a
corresponding linearized rate independent analysis: if we assume that the layer is rate
independent, and its stress-strain relation is T = g('I), the linearized perturbation of the
governing equation becomes

g'(Y)ii +g(y) = O. (3.16)

Thus, ii becomes infinite when g'(y) = 0 and g( 'I) # 0, and may be nonzero when g'( 'I) = 0 and
g(y) = O. This is consistent with the bifurcation analysis of Rudnicki and Rice[12] for pure
shear. In summary, the above linearized analysis of a layer under shear shows that the material
rate sensitivity retards the instability predicted by the corresponding rate independent analysis.

4. NON-LINEAR STABILITY ANALYSIS AND NUMERICAL RESULTS
OF THE SIMPLE SHEAR MODEL

Next, we want to examine the validity of the linearized perturbation analysis. We suppose
an imperfection in the form of a thin planar band having its normal in the y direction. The band
lies within the layer of unit thickness (Fig. 2), has width w, and a different g( 'Y) from the
surrounding material. We denote quantities in the band by a subscript "1", and quantities
outside the band by a subscript "0". We denote the overall plastic shear strain and its rate as y
and .y, respectively. The stress history is chosen such that .y = Ii = constant, and, therefore,
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w

Fig. 2. An imperfection in the form of a thin planar band of width w lying within a layer of unit thickness.

T = g('Y) = g(lit). Then eqn (3.5) can be rewritten for both region "0" and region "I" as

d
( )

l/m
'Yo T

<f.Y = go( 'Yo)

159

(4.1)

(4.2)

since the equilibrium condition requires T to be homogeneous in the y direction. The overall
increment d'Y is

d'Y = w dOYI +(1- w) d'Yo.

The stress T can be obtained from eqns (4.1)-(4.3) as

(4.3)

(4.4)

The elastic shear strains of both regions are equal to T/G.
We assume a quadratic form for g('Y) to approximate the strain softening behavior in the

neighborhood of 'Yp as

(4.5)

where K is the curvature at the peak stress, and Tp and 'Yp are the maximum stress and the
corresponding strain.

In region "1", we assume a slight perturbation in the property g( 'Y) as

(4:6)

where g( 'YI) is presently assumed to be constant.
In region "0", we do not perturb the function g('Y) and we have

(4.7)

The width w of the band generally relates to the microstructure of the material. The analysis
here has no signiflcant length scale which can give an estimate of the width w. We assume that
the band has infinitesimally small width w = 0 so that the effects on localization of deformation
due to rate sensitivities and initial inhomogeneities can be more readily investigated.

In Fig. 3, we plot the exact results for T=(- g) =0.01 Tp, 'Yp =0.15, and ToITp =0.9, where TO

is the shear stress at zero plastic shear strain. The rescaled shear strain difference of both
regions, (K/2Tp )1/2T('Y0- 'Yt)IT, are plotted as a function of (K/2Tp )tl2('Yo- 'Yp), The curve marked
m = 0 represents the corresponding rate independent solution. For the rate independent
analysis, the function g is now the stress function. The equih'brium condition requires
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Fig. 3. Comparison of the growth of the excess shear strain in the band for different m.

go("Yo) = gl("Yl)' The maximum strain 'YoC' which can be attained in the region "0" is

(4.8)

There is no valid solution for region "0" after y = 'Yocr unless the layer unloads. For the rate
dependent case (m #- 0), the curves are simply obtained by integrating eqns (4.1), (4.2) and (4.4)
incrementally. We can see that the shear strain in the band grows slowly at first, but that an
extremely fast growth in shear strain in the band eventually takes over. Here, the localization
strain "Yoc

, is defined at the moment when d"Yddyo =00 is reached; the localization condition is
met when 1'1 reaches a value such that g("YI) = 0 because the quadratic form of g( "Yl) is assumed.

Since we assume that the band width w is infinitesimally small (w = 0), we have the overall
plastic strain l' equivalent to "Yo. If we assume a finite band width, according to the rate
dependent analysis, the overall shear plastic strain is infinite when d1'dd"yo = 00 (see eqn 4.3).

We define Sy as

In Fig. 4, the quantity (1</2 Tp )I/2 Soy is plotted against m. We can see that the retardation effect
on strain localization is larger when m is larger and when the inhomogeneity Tis smaller. From
the numberical solutions, we can write approximately

(4.9)

where f(T) is a constant which depends on the imperfection level f. The detailed asymptotic
analysis of the retardation on localization for very small m is given in the appendix.
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Fig. 4. The normalized additional maximum strain plotted as a function of m for different imperfection
level f.
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Fig. 5. Comparison of the growth of the perturbed strain for different m.

Figure 5 shows the numerical results of the linearized perturbation analysis for 'Yp =0.15,
t =0.01, and To/Tp =0.9. By comparing this to Fig. 3, we can see that the linearized analysis
significantly UDderestimates the excess strain in the band. However, it can show the trend of the
effects on localization due to the rate sensitivity.

In Fig. 6, solutions to the linearized perturbation scheme both from the asymptotic analysis
and from the straightforward incremental integration of eqn (3.11) are shown for 'Yp =0.15,
t =0.01, and To1Tp =0.9. In the plot, the dash lines represent the asymptotic solutions and the
solid lines represent the direct integrations of eqn (3.11). The plots show good agreement in
predictions of the perturbed shear strain .y and that, as m gets smaller, the prediction of the
solution by using the asymptotic result is better.

In Fig. 7, a comparison of various analysis for 'Yp =0.15, t = 0.01, and TO/Tp =0.9 is plotted.
Curve 1 represents the rate independent (m = 0) exact solution; curve 2 is the linear pertur
bation results of the rate independent (m = 0) analysis; curve 3 is the rate dependent (m =
0.025) exact solution which gives a larger localization strain; curve 5 is the linear perturbation
results of the rate dependent (m = 0.025) analysis which underestimates the perturbed strain .y
in the band. We note that the localization strain of curve 2 may move toward the bifurcation
shear strain 'Yp as t is smaller, and that the localization strain of curve 3 may be less than the
bifurcation shear strain 'Yp when m is smaller or t is larger. The governing equation of the rate
dependent perturbation analysis with the second order correction is

(4.10)

Here, g("I) is assumed to be quadratic in y so that g"'( y) = 0; therefore, eqn (4.10) is the exact

20

~..
N

~ 10

o.o 02

(<</2Tp )ll2( r - Yp)

-02
0 ......---''--___L_........_ __l.._........_.....L..._.........--l
-0.4

Fig. 6. Comparison of the solutions to the linearized perturbation scheme. The dashed lines represent the
asymptotic solutions and the solid lines represent the straightforward integration of eqn (3.11).



162 Jwo PAN

:--- (I J Exacl solution, mo:O

>::. (2) Lineor solution, maO
~ 20
~ (31 Exact solution, m 0:0.025

~"
N
"
~

l5
~ 10

If-<
"-

[
~n

N
"
~

(4) Second order solution,

m-0.025

(5) Un&Qr solution,

m -0.025

-02

121

02 04

Fig. 7. Comparison of the solutions for various analyses.

expansion. If the term which contains g"('Y) is dropped, eqn (4.10) is reduced to eqn (3.11)
because of f = - g('Y) and T('Y) = g('Y). Curve 4 is the direct numerical integration of the above
equation (m = 0.025). The results are better than the linearized analysis, but, the excess strain
in the band is still underestimated.

Now, we choose the power rate hardening law as

(4.11)

and, particularly, assume

(4.12)

where k and N are constants. Equation (4.12) gives strain softening behavior. For the layer, we
assume

(4.13)

(4.14)

where 1/ represents the imperfection in the band.
For the rate dependent analysis, the equilibrium condition requires

(4.15)

For the corresponding rate independent analysis, the equilibrium condition requires

(4.16)

The governing equations (4.15) and (4.16) are exactly the same as those derived by Hutchinson
and Neale [6] for a necked tensile bar. Their results may be summarized as follows: When rate
sensitivity is not considered, the maximum shear strain y~' occurs when )'1 = N and is given
by the relation

(4.17)

we note that, when 1/ =0, YO' = N which is the bifurcation shear strain of the layer (or the
Considere strain of the tensile bar). For small imperfection 1/, eqn (4.17) gives

(4.18)
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Equation (4.18) shows that a larger 1} promotes earlier localization. When rate sensitivity is
considered, the localization condition is defined at the instant when 'Yt becomes infinite for the
case considered herein. Thus, let s = lim, and p = Nlm, so the governing equation (4.15)
becomes

For small m, small 1} and m ::s 21}, the asymptotic solution of eqn (4.19) is

-.!L""~ln(~)
\IN 2y'2:;) m

(4.19)

(4.20)

where 8'Y = 'Yo' - 'Yoc
,. The retarding effects on localization due to m are clearly seen.

It is very interesting to note that the geometric necking mechanism of the tensile bar, in
some sense, is equivalent to some material degrading mechanism in the shear layer model. The
localization analysis for both problems is so closely related.

5. CONCLUSION

A general framework for linearized perturbation analysis in rate dependent materials has
been established. Specifically, the connection with localization into a band mode has been
made.

Without getting involved complex constitutive description of material rate dependent
behavior, we have simply investigated the basic shear mechanism of the plastic deformation.
By assuming strain softening behavior in shear, we have examined the validity of the linearized
analysis, and have found that a fully nonlinear analysis is needed to more accurately describe
the localization process. However, the qualitative tendency to localize can be obtained from the
linearized perturbation analysis. Also, the retarding effects on the localization of deformation
due to the material rate sensitivity has been noted.
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APPENDIX

The governing equations of the shear layer which is considered in the main text are

(AI)

(A2)
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When the band width II' is assumed to be infinitesimally small, dyo =dyt. and 'T =g;/..Yo). If we assume that gl(YI) goes to
zero fast enough as 'YI goes infinite, we then define that localization occurs at a critical value of Yo' when 'YI becomes
infinite. From eqns (AI) and (A2),

(A3)

when m is a small COQstant and 8t('YI) drops to zero fast enough, the major contribution to the integral on the left-hand side
of eqn (A3) comes near the peak of gt('Yl). Applying Laplace's method, we find

(A4)

A very small m is assumed to ensure Yo' < 'Yp, so that the major contribution to the Lh.s. of eqn (A3) comes near yO'.
Applying Laplace's method, we have

Denote

"," 11m Tp - ~(yoCT _ yp)2
(, )"'" d - ( K(C' )2) 2Jo gll\ 'Yo 'Yo - m Tp- 2" yo - YP ---K=-(Y-o~c'---'Y-p)- (AS)

(A6)

where joe, = Yp -(2fJI<)1/2 represents the maximum strain that can be attained outside the band for the corresponding rate
independent analysis. We can obtain the expression for the small 81 from eqns (A4)-(A6) as

(A7)

The retardation effects on localization due to the rate sensitivity m cannot be readily understood from the complex
relationship (A7). In Fig. 8, we plot (K/2'1'p)1/28'Y against m according to eqn (A7) for very small values of m. Wiltn the
imperfection level f is varied, the plot shows the same trends as that observed in Fig. 4. It is well known that the
numerical integration is very difficult since the ditferential equation is very stitf when the rate sensitivity m is small;
therefore, in Fig. 8, the asymptotic results are plotted for very small m and a good qualitative agreement with the
numerical results of the exact solution is shown.

008

Asymptotic SOlution

006

>-
«l

~ 00•..
N

"~
002

0 00004 00006 00008 ooo!
m

Fig. 8. The asymptotic solutions for the normalized additional maximum st~in plotted as functions of m at
very small m for ditferent imperfection level T.


